Report of the Color Committee May 15, 1946

Introduction

THE Color Committee is investigating the possibility of replacing the Lovibond system of measuring oil colors by a suitable photoelectric system that will be versatile, accurate, and acceptable to Industry and users in general. Work along this line has been divided into three logical steps:

1. Fairly complete investigation of several oils covering a wide range in color.

2. Correlation of data obtained on numerous oils in a limited color range with Lovibond colors, visual gradings, etc.

3. The use of a particular photoelectric setup to evaluate the bleach test on a single oil.

Work Done

Twelve samples of oil were carefully prepared by selection, filtration, etc., bottled in glass and submitted to several members of the Color Committee. The oils selected were:

Number 1-Refined and bleached coconut oil

2-Refined coconut oil

3-Refined and bleached cottonseed oil

4-Refined and bleached soybean oil

-Refined cottonseed oil

6-Refined soybean oil

7-12-Tallow-grease mixtures

The Committee members were asked to read the Lovibond colors on the oils, and to read them on such photoelectric equipment as they had available, reporting the length of column read, the filters used, the kind of instrument, cell type, etc. Several members contributed data which is assembled in Tables 1, 2, 3, and 4. Both water and symmetrical tetrachlorethane were used as comparison media, the first for obvious reasons, the second because its refractive index is much nearer that of vegetable oils and to a certain extent will thereby eliminate negative readings.

Table No. 1 shows the Lovibond readings for the various oils. It should be noted that there is a considerable variation in readings even at low levels. Table No. 2 shows a composite of data obtained on the Klett-Summerson colorimeter, Cenco photolometer, Fisher electro-photometer, Coleman colorimeter, and Evelyn colorimeter. Table No. 3 shows more detailed information on the Coleman M-11 Universal spectro-photometer. Table No. 4 shows data on the Coleman and Evelyn colorimeters as well as these same data

calculated to a basis of $E_{\rm 1cm.}^{100\%}$. No attempt should be made to compare E values obtained on one instrument directly with E values on the other, since different columns of oil have been used and different light characteristics. This will be discussed further later in the report. The data do represent one way of making comparisons after standardization of method is brought about.

Two laboratories contributed complete spectral transmission curves on all twelve oils as determined on the Beckman Model DU photoelectric spectrophotometer. A third laboratory contributed abbreviated curves in the region 400-600 mu. The transmission curves are plotted in Figure 1 while Table No. 5 shows the abbreviated data in tabular form. Transmissions are plotted on 100 mm. columns for oils 1 to 6, 25 mm. for 7 to 9, and 6.25 mm. for 10 to 12. Actually, the measurements were not made in all cases on these lengths of column, but where necessary the calculations have been made to place the oil on the indicated basis.

For the purposes of this study, the transmission curves on several of the filters used in the Klett-Summerson colorimeter were also determined on the Beckman spectrophotometer. The Klett-Summerson instrument utilizes a General Electric photocell No. 88x565. The spectral sensitivity of this cell is materially different from that of the eye, being essentially the same as the eye at maximum sensitivity (approximately 550 mu.) and through the red region of the spectrum, but being much more sensitive than the eye in the blue region. The combined response of photocell and filter combinations was calculated by multiplying the two response curves. The combined sensitivity curve was further modified by dividing each point on the curve by the maximum sensitivity of the filter-photocell combination. The resultant curves for filters 47, 50, 56, 60, and 66 are superimposed on the spectral transmission curves for the oils (Figure 1). These data represent available information and are not intended to imply that the Klett filters are preferable to other filters in any way. Similar comparisons can be drawn up for any filterphotocell combination.

The transmission curves in Figure 1 were plotted first to show a reasonable transmission, and secondly to give oil depths comparable to 40 mm., 10 mm., and

TABLE NO. 1

	Still	man	Mil	ner	Aş	tee	Du	rkee	Span	nuth	Cam	pbell	Cor	man	Ave	rage	Spi in 1	read Red
ĺ	Y	R	Y	R	Y	R	Y	R	Y	R	Y	R	Y	R	Y	R	High	Low
1. RB Coconut Oil	2	0.4	2	0.3	2	0.7	2	0.5	2	0,2	2	0.4	8	0.8	2	0.5	0.8	0.2
2, Ref. Coconut Oil	4	1.2	5	1.1	6	1.3	5	1.4	5	1.4	5	1.2	6	1.4	5	1.3	1.4	1.1
3. RB Cottonseed Oil	8	1.4	10	1.2	9	1.7	8	1.4	8	1.4	7	1.4	12	1.2	9	1.4	1.7	1.2
4. RB Soybean Oil	10	2.0	15	1.5	23	2.0	18	2.0	20	2.0	15	2.0	25	2.1	18	1.9	2.1	1.5
5. Ref. Cottonseed Oil	20	4.2	20	3.7	35	4.3	30	4.4	4()	4.2	25	4.1	35	4.6	29	4.2	4.6	3.7
6. Ref. Soybean Oil	30	7.7	53	9,7	35	8.8	35	7.9	50	8.9	35	7.7	35	8.8	39	8.5	9.7	7.7
7. Tallow-Grease Mix	110	15.4	70	13.7	35	12.9	70	14.4			75	14.2	100	15.0	77	14.3	15.4	12.9
8. Tallow-Grease Mix	50	24.1	70	25.9	35	25.3	70	23.0			70	23.3	70	25.0	61	24.4	25.9	23.0
9. Tallow-Grease Mix	120	31.7	70	31.0	35	32.0	170	37.0			90	31.6	100	32.0	98	32.6	37.0	31.0
10. Tallow-Grease Mix	240	11.2	70	4.5	35	8.7	280	11.0	65	6.8	90	7.3	65	13.0	121	8.9	13.0	4.5
11, Tallow-Grease Mix		17.3	70	17.4	35	15.4	150	21.0	75	15.0	70	14.1	100	17.7	91	16.8	21.0	14.1
12. Tallow-Grease Mix	210	47.3		••••	35	50.0	250	53.0	120	50.0	70	37.2	105	18.0*	149	45.6	53.0	36.0

Oils 1 to 9 read on $5\frac{1}{4}$ " column, 10 to 12 read on 1" column. * Read on $\frac{1}{2}$ " column, values doubled before using in the average.

TABLE NO. 2

Klett-Summerson Colorimeter Readings

	No.	No. 47 Filter vs. H ₂ O	lter	Col.	Cal. to	ź —	No. 50 Fil	lter vs. I	H20	Col.	Cal. to	ž	No. 56 Filte vs. H ₂ 0	lter	[Sel	Cal. to	No. 6	No. 66 Filter vs.		TCE*	Col.	Cal. to
	GWA	GWA RTM Avg.	Avg.	Read.	#0 mm	RCS	RCS GWA	RTM	Avg.	Kead.	*0 mm.	RCS	RTM	Avg.	Kead.	40 mm.	RCS (GWA.	RTM	Avg.	read.	
1 DD Commt Oil	2	1.1	14.0	mm 06	÷	÷	14.0	50 50	9.7	40 mm.	9.7	2.3			40 mm.	-1.5	<u>. </u>	l l			40 mm	2.5
1. N.D. COCOLUL Ottom	0.00	0.70	9 7 6	900			33.6	5.40	26.8	07	26.3	4.0			40	30					40	5.4
2. Evel. Coconne Culturation	9 6	4 6	9 0) () (_		24.0	20.00	4.85	÷	23.4	0.5			40	0.0	-				0	8.0
A DE COUNTREED OIL	0.0	9 6	20.03	000			45.30	47.0	65.3	04	183	1.5			04	-					40	e.i
E Doe Cottongood Oil	100	1 20 0	100	26			141	132	139	40	139	21.1			40	20.3	٠.				40	9.2
5. Def. Combanded On.	707	750	489	66			495	462	181	0	484	30.0			40	30.6					07	147
Tarter Custon Mile	100	070	000	2			295	271	285	50	570	156+			50	155					50	112
o Thellow Group Mis	4 to	991	100	21.			25.3	575	248	20	496	183+			50	177					25	20
o. Tallow-Grease Mix	0 1 0	076	276	2.5			20	331	360	50	130	135			50	252					20	122
9. 18110W-Grease Mix	1 5	080	096	100	_		68	180	190	10.01	3340	266*			25.5	1045			_		61	1120
11 Tollow Grease Miv	2 C	0.00	0.00	10	3404	160	160	0#1	153	2,5	2448	09	58.2	59.1	20.	946	. 40	33.0	28.0	34	10 01	544
19 Tallow-Greeke Mix	1	1 2	100	10	5040	_	378	240	286	5.51	4576	130			50	984					53	946

Klett-Summerson readings by Stillman, Agee, and Milner.

Readings on Various Colorimeters

†40 mm. column *10 mm. column

†10 mm. column *Tetrachlorethane

						Sermont	wantings on taitous colorimeters	TO COLOR	e Tonomi									
	Cenc	Cenco Photelometer-1 Filter-Trans.	eter-1 s.	Fisher E	lectro-Photon Filter-Trans.	lectro-Photometer—2 Filter-Trans.	r—2	Colen	aan Colorimet Filter-Trans	Joleman Colorimeter—3 Filter-Trans.	န			Evelyn C Filte	Evelyn Colorimeter—4 Filter-Trans.			
	410 5	525 610	Cell	525 mu. 45 mm. cell	525	425 1	Cell Length	515	525 5	540 Le	Cell	Against H ₂ O A 515 B		Against TCE A 515 B	Against H ₂ O A 540 B	н _э 0 В	Against TCE A 540 B	rce B
1. RB Coconut Oil. 2. Ref. Coconut Oil. 3. RB Cotonused Oil. 4. RB Soybean Oil. 6. Ref. Soybean Oil. 7. Tallow-Grease Mix. 8. Tallow-Grease Mix. 19. Tallow-Grease Mix. 10. Tallow-Grease Mix.	0 4 2 1 4 10 4 10 0 01 11 01 20 1 0 20 20 10 0 0 20 20 20 20 20 20 20 20 20 20 20 2	99.0 96.2 78.5 90.0 88.0 100 64.2 92.5 39.2 91.2 20.0 48.0 18.4 60.4 13.0 22.0	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88769 8770 88150 88150 1440 11400 11500 11	95.3 993.7 993.7 991.2 991.2 179.8 142.9 17.7 17.7 17.7 17.7	67.5 67.5 67.5 25.4 14.3*	្តាស់ ទេ	88 88 86 87 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.00 10	0.000000000000000000000000000000000000	00000000000000000000000000000000000000	100+ 98.3 100 100+ 84.5 83.5 84.8 44.5 40.8 44.5 41.3 11.0 30.0	ස් ල් ක් ස් ට් ට් වේ ජ	998.3 998.3 998.3 991.8 991.8 991.0 991.0 992.3 992.3 993.3 903.3	1000 1000 1000 1000 1000 1000 1000 100	::::::::::::::::::::::::::::::::::::::	ល្ខ ០០០៣ ២ ២ ២២ 4 ១១ ។ 4 ២.೧೯ ៤ ២ ១ ២ ២ ១ ១ ១ ២ ២ ១ ២ ២ ២ ២ ១ ២ ២ ២ ២ ២	0.000000000000000000000000000000000000
11. Tallow-Grease Mix	1.5		201		10.3		101		- 1	_	20	ı		1		0.3	1.0	0.0
The second secon																		

*10mm. column
1—Results by M. N. States. 2—Results by Durkee & Potts. 3—Results by H. T. Spannuth. 4—Results by A—H. T. Spannuth, B—A. D. Campbell. Square cells were used throughout except on the Evelyn Colorimeter where 20 mm. round tubes were used.

A.O.C.S. Collaborative Color Samples 1 to 12 TABLE NO. 4

			% Transmission							E 106%	8% 3m·				
Oil No.	Colema	Coleman Spectrophotometer No. 11	er No. 11	Evelyn C	Evelyn Colorimeter		Coleman £	3pectroph	Coleman Spectrophotometer No. 1	Vo. 11			Evelyn C	Evelyn Colorimeter	
	515	525	540	515	540	515		525		540	,	515	5	24	540
	H ₂ O EtCl ₄	H2O EtCl	H2O EtCl4	H2O EtCl4	H2O EtCL	H ₂ O Et	EtC1,	H ₂ 0	EtC14	H_2O	EtCL.	H_2O	EtC1	H_3O	EtC1,
-	200		ł	}	١.			_	01(3)	.01(0)	,01(0)	:	(7)10.	:	.01(6)
5	0.08	81.8 81.5	83.0 84.0	98.3 89.8	100+ 91.8	.02(4) .02	.02(4)	.02(2)	.02(2)	.02(0)	(6)10	.00(4)	.02(3)	;	(01(6)
7	0.00						_	_	01(4)	.01(0)	(0)10	:	.01(9)	:	.01(2)
	000							_	02(0)	.01(3)	.01(3)	.00(4)	.02(3)	:	.01(4)
η.	2.46						_	_	05(1)	.03(4)	.03(4)	.03(7)	.05(6)	.01(3)	.03(2)
Α	0.1.					_	_	_	13(9)	.07(1)	.07(5)	.18(4)	.20(3)	.03(4)	.05(4)
-	10							_	16(9)	.13(0)	.13(0)	.17(6)	.18(5)	.10(5)	.11(9)
Z	5					_		_	18(6)	.14(7)	.14(9)	.18(6)	.20(4)	.12(4)	.14(1)
	X Y					_		_	25(0)	.20(6)	.20(4)	.25(4)	.27(0)	.17(2)	.18(9)
10								_	77(6)	(6)69.	(6)69	.81(4)	.80(1)	(6)69	.63(3)
	9 6					_		_	(1)	.65(1)	.67(3)	(1)92	.76(1)	.61(1)	.58(4)
4. A	1 0	200	10		0.8 1.0	1.1 (5) 1.1	(5)	-	(9) 0	1.00	00.1	1.2 (6)	1.0 (6)	1.04(5)	1.00
12	0.0	0.0	2.4			***************************************	- Lummundan,		,			, , ,		,	

Notes:
1—On the Coleman instrument a 40 mm. cell was used for samples 1 to 9, and a 20 mm. cell for samples 10 to 12.
1—On the Coleman—40 mm. and 20 mm, rectangular cells: Evelyn—20 mm.diameter test tubes.
3—Cells used: Coleman—PC-4 range 400 to 700 mu.; Evelyn—"515" mu. range 485·550 mu., "540" mu. range 517·570 mu.
4—Oils 7 to 12 were heated 5° F. above their melting points.

TABLE NO. 3 A.O.C.S. Collaborative Color Samples 1 to 12 Percent Transmission-Coleman-13 mm. Column

Oil No.	400		42	5	4:	50	50	00	52	25	58	50	6:	10
On No.	H_2O	EtCl4	H_2O	EtCl4	H ₂ O	EtCl4	H ₂ O	EtCl ₄	H ₂ O	EtCl4	H ₂ O	EtCl4	H ₂ O	EtCl4
1	82.0 77.5 57.0 34.5 26.0 6.5 51.0 49.0	90.0 85.5 63.0 38.0 28.0 8.0 58.5 67.0 54.0	87.5 84.0 69.5 46.5 32.0 5.5 55.0 69.5 59.5	92.5 89.0 74.5 50.0 34.0 61.0 76.0 63.0	91.5 88.5 81.0 62.0 44.0 6.0 62.5 79.0 71.5	94.0 91.5 83.5 65.0 45.0 66.5 86.0 74.0	96.0 95.2 93.5 88.0 72.5 15.0 77.0 91.0 88.0	96.0 95.0 94.5 88.7 73.0 16.0 80.0 94.5 88.0	97.0 97.0 96.0 94.5 85.7 52.0 84.5 95.0 91.5	97.0 96.7 96.5 94.5 86.0 53.5 86.5 97.0 92.0	98.0 98.0 98.0 97.5 92.5 86.0 89.0 97.0	97.5 97.5 97.5 97.5 92.0 83.0 90.5 99.0	98.5 99.5 99.5 99.7 97.5 87.2 98.0 99.5	97.5 98.3 98.5 99.3 96.5 95.0 94.0 100.0 97.0
10 11 12	20.0 47.0 16.0	26.5 48.2 17.0	$\begin{array}{c} 22.5 \\ 54.0 \\ 20.9 \end{array}$	$29.0 \\ 54.0 \\ 21.0$	38.0 65.0 32.0	45.5 64.0 83.5	70.5 84.0 50.0	77.0 81.0 62.0	79.0 88.0 69.0	82.0 85.0 70.0	84.0 91.0 75.5	86.0 88.0 76.5	88.0 95.5 85.5	88.5 93.0 86.0

Notes:

Wave length—In mu.
Filter—PC-4.

Cells—13 mm. square cuvettes. Oils 1 to 6—Readings made on 100% oil; oils 7 to 12—10% oil in EtCl₄.

TABLE NO. 5 A.O.C.S Collaborative Color Samples 1-12. April 15, 1946.

Oil No.		Perce		mission (e Length		cated	
V 2.W.	400	420	450	500	520	560	610
1	91.5	94.5	97.0	98.0	98.0	98.5	98.5
2	86.5	90.0	93.0	96.5	97.0	98.0	99.0
3	66.0	78.0	85.5	96.5	97.5	98.0	99.0
4	33.5	51.0	71.0	92.5	96.0	99.0	99.5
,	28.0	36.0	53.0	78.0	88.5	94.0	98.0
. 10%	53.0	40.0	26.0	61.5	90.0	96.5	98.5
7. 10%	72.0	71.5	78.0	88.0	94.0	97.0	98.0
3. 10%	64.5	73.5	83.0	92.0	95.0	97.0	98.5
0. 10%	59.0	64.0	77.5	90.0	93.0	96.0	97.5
). 10%	15.7	13.5	31.5	60.7	76.0	84.0	86.0
. 10%	43.5	46.0	58.0	76.0	85.0	91.0	94.0
2. 10%	8.0	11.0	25.0	52.5	66.0	78.0	85.0

Notes:

- 1. Instrument—Beckman Quartz Spectrophotometer Model DU.
 2. Blank—Ethylene Tetrachloride.
 3. Cells—10 mm. cuvettes.
 4. Concentrations

- 1-5 inclusive read on pure oil; 6-12, 10% oil solution in Ethylene Tetrachloride. Wave length—in mu.

2.5 mm. column lengths which seem to be desirable in measuring the color of the oils on the Klett instrument. An inspection of Figure 1 shows:

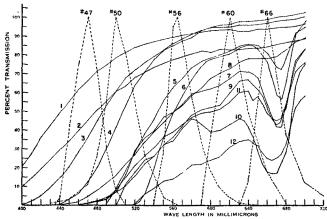


Fig. 1. Spectrophotometric transmission on A.O.C.S. Color Committee oils No. 1-12 and Klett-Summerson filters No. 47, 50, 56, 60, and 66. Oils 1-6, 100 mm. column; 7-9, 25 mm. column; 10-12, 6.25 mm. column.

1. That light colored oils show their greatest spread in transmission in the blue end of the spectrum (400 to 500 mu.). The darker oils show the widest spread in the red end (above 550 mu.).

2. If it is desirable to differentiate between light oils, a filter in the blue range, No. 47 for example, would be indicated. If dark oils only are to be closely separated, then a No. 56 or No. 60 filter is indicated. A filter near 500 mu. seems indicated if it is desirable to read all colors with a single filter.

3. The No. 66 filter is extremely useful in measuring chlorophyll absorption, especially when used in conjunction with the No. 60 filter.

Based on the conclusions derived above, from a study of oil transmissions and filter-photocell response curves, 89 oils were color analyzed by the Klett-Summerson colorimeter and the Lovibond colorimeter. These same oils were also placed in order by visual grading as to color. The oils were in two groups, Group 1 containing 37 oils and Group 2, 52 oils. These were all soybean and cottonseed oils. Some were refined and bleached, some refined only. Part were bleached in the plant, part in the laboratory.

Correlations were drawn up between Lovibond red readings and readings obtained on the Klett instrument using various filters. Figure 2 shows the correlation data sheet for Lovibond red vs. readings on the No. 50 filter. The correlation of 9395 is assurance that results obtained using a photocell instrument with the correct filter will give results differing not too greatly from the Lovibond. Calculation of lines of best fit for these oils show:

Lovibond Red (R) =
$$0.01335K + 1.20$$

Klett Reading (K) = $66.0R - 34.2$

The correlation between Lovibond red readings and Klett readings, using the No. 47 filter and No. 56 filter, were much poorer.

Correlations making use of the Spearman-Brown rank order formula $\rho = 1 - \frac{6 \times d^2}{n(n^2-1)}$ were calculated for eye gradings vs. various filter readings and Lovibond readings.

Comparison		ρ
	Group 1	Group 2
Eye vs. Lovibond red. Eye vs. No. 47 filter. Eye vs. No. 50 filter. Eye vs. No. 56 filter. Eye vs. No. 66 filter. Lovibond red vs. No. 50 filter.	.772 .935 .902 .780	.958 .852 .959 .936 .908

The interesting point in these correlations is the excellent agreement between eye gradings and readings obtained using the No. 50 filter. Equally as good is the correlation between the eye and Lovibond red readings.

H	¥ .	0	50	80 80	- 4	6.4	5.0	5.55	6.0 6.5 7.0	5.	- 2			9.0	9.6	7.5 8.0 8.5 9.0 9.5 10.0 10.5		1011.5	12.0	12.5	Ų		4		×	<u> </u>	<u>ئ</u> بر	7 2 2		$\sum X_{pos} = 230$	Zypos = 248		Exypas= 4532
<u>. </u>				-						-;		-		-3		3	_ •	=		0	-	<i>y</i>		Ž)	(1	<	ξ΄ 1		$\sum x_{meg} = 309$	24neg = 386		Exymeg. 1
+			6.2		-	٦,	2.4		6.4 6.9 7.4	0 (-		<u> </u>	* "	8 4	8.4 8.9 9.4 9.9 10.4 10.8	-1	<u> </u>	1.1	2 2					+		+	1	+	62-= X <u>3</u>	Zy = -138		Exy = +4531
	2 = =	2	<u></u>	+	1	*	٠	╁	+		1	1	' _	 	╂	+-	_	1	_	-				T	-	-				$\Sigma x^2 = 4085$	Zy2 = 5730	>	- 89
008 122	-		1	+	+-		1	\dagger	+	+-	+	+-	-	$oxed{\Box}$	+	+	+	**************************************	-]-	8	=	22	242	23	10	23		253	dx= xx = -		$\frac{dy}{dy} = \frac{\Sigma y}{N}$	-138
740	-			\vdash	<u> </u>	_		Г	╁╌	-	-	-	-			SEE	35	1		-	_	2		100	12		12			dx =8876 dx =.7878			d a
681	-			 		<u> </u>			-	-		_	-		-	ن		-			2	6	81	162	=	91	91		144	72 2X2 A.	6	h3 =	2 0,2
651	-	<u> </u>		-		_			_			F	_		-	\ <u>_</u>					4	8	32	256	25	2	25		200	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)	'n
621 650	-	_		 	-				-		2	_	-		X		$\left \cdot \right $				9	7	42	294	2	25	25		175	68	7878	68	9 -2.4044
591 620	-				_						3	3	-	7	7						<u>0</u>	9	09	360	т.	36	36		216	= 45,1111		= 61.9776	776
961 590	_											\dashv	-	/2	ю			_•			60	5	9	200	4	47	47		235	$\mathcal{A} = 6.72$	J.	7.87	
560	-			-	_					_									-	-	4	4	91	6.4	-	22	27		108	Σχη	1 1 7		
530	_												_			-					2	3	9	<u>8</u>	\dashv			5	5	"	JN - 0x.0y	ı	
471 500	<u> </u>			\vdash	<u> </u>							7						_			-	2	2	4		ю	-1	6	9	•	×		
441 470	-	_		-	<u> </u>																	-				-	_			100	50.9101 - 1.2216	216	distance and the second
411 440	-	L		-	-					1												0									32.8864		
381 410					<u> </u>			8			-	_					\dashv				4	-	4	4	4	ιC)	_	_			9		
380	-				\vdash		_	-	-			2									5	2	2	20	9	9					52.8864		
350												_									-	3	ъ	6	ю		3		6				
291 320	\vdash	\sqcup					X						_			1		_	\Box		8	4	80	32	80	\dashv	80		32	7 = .9395			
261 290	_			-	-					\dashv	\dashv	-	-			\dashv	-	-			2	٥	의	20	=	\dashv			55				
231 260					4			-	-							-		\dashv			N	ø	12	72	8	\dashv	80	_	4 80	***************************************			
201 230				9	H					┪			_			\neg	\dashv	_	_		9	2	42	294	42	4	42		294	Comments	2		
200				7	\vdash	-										_	-				2	8	9	128	4	\dashv	4		112	CALCULAT	CALCULATED LINES OF	BEST FIT	÷
170			7	\square		_	-		\dashv			\dashv				\dashv	\dashv		_		-	6	6	<u>-</u>	ю		6		27	1;			(!
111 140		, e,			<u>-</u>																7	2		20 200	=	_	=		0	 }> :	# KLEIT SUMMER	SUMMERSON VALUES	LUES
91 110	† 0 ;	\ \ 2.	2	2	_					\dashv	\dashv	\dashv					-				٩	Ξ	99	726	45	4	45		495	Ħ	= LOVIBOND RED	VALUES	
00	र	9								\dashv	_	-				u.	F ig. 2	N	[-2	12		144 1728	112	112	2		1344	Ħ	66.0 X - 34.2		
50	3				-												\dashv		_		4	<u>.</u>	- 1	52 676	42	4	42		546); ≭	.01335 Y + 1.20		
-	9 2	6	2	0	4 w		4	4	-		2	9	4	ю	80	7	- 2	-	7	3	\times	var.	X-variable		LOVIBOND	ONO	RED	- 1	COLORS	S	CORRELA	471ON D	CORRELATION DATA SHEET
-+	<u> </u>	6	80	7	9	4	ю	2	-	0	-	m	4	က	ဖ	~	8	01	=	12	시	Vari	Y-variable		KLETT READINGS	F 8	ADIN	- 1	- #50) FILTER	11. Thursh Division o	one of Psycho	hodu
-	22 60	8	9	70 2	24 15		~	60	-	~	2	12	30 16	20	8	4	9	0 6	22	36	3	9/0	Subjects		A.0.C.S		COLOR	- 1	OMM	COMMITTEE	Carnegie II	institute o	Carnegie Institute of Technology Pitsburgh. Pa
FXZ	242 600 729 128 490 144 75	0 729	128	190	75		36	9			6	24 9	90 64		288	75 288 98 128		<u>0</u>	100242432	432	Ó	du	Computer				Dote		APRIL,	1946		•	Form 1373

Each member of the Refining Committee of the A.O.C.S. was asked to send a sample of refined and bleached oil No. 5 to one member of the Color Committee in order that a separate check on the overall color of the oil could be obtained. The Lovibond color on each oil and the readings on the Klett-Sum-

TABLE NO. 6 A.O.C.S Refined and Bleached Soybean Oil No. 5

Chem. No.	Lovibond Color Reported	Lovibond Color by Single Operator	Read No. 50	mmerson lings Filter– 1. Cell	Lovibond Red Cal- culated from B
			A†	B†	
No. 49	20/1.9	20/1.5		49.5	1.86
No. 47		17/1.9	******	59.0	1.99
Southern Cotton Oil	20/1.8	16/1.6		55.2	1.94
Picard Testing Lab(1).		20/1.7	67.5	70.0	2.13
Picard Testing Lab (2).		20/1.8	59.5	61.5	2.02
Southwest Labs		17/1.6	47.0	51.0	1.88
No. 32		13/1.5	41,5	45.0	1.80
No. 59	18/1.4	10/1.3	45.5	49.0	1.85
No. 51		12/1.2	39.0	42.2	1.76
No. 3	16/1.6	20/1.8	72.5	77.0	2.23
Shuey & Company	19/1.9	20/1.8	60.0	64.0	2.05
No. 64		17/1.5	49.0	53.2	1.91
No. 46	27/2.6*	21/2.9	138.5	144.0	3.12
No. 24		16/1.9	69.2	74.3	2.19
F. R. Robertson	12/1.3	15/1.6	56.0	59.9	2.00
Edwal Labs (0.1)	20/2.0	20/1.8	75.5	79.8	2.27
Edwal Labs (0.2)	20/2.0	20/1.9	80.0	84.2	2.33
The Battle Lab	19/1.9	17/1.8	65.0	68.2	2.11
Fort Worth Lab	20/1.7	15/1.6	64.1	68.1	2.11
Pope Testing Lab	16/1.6	17/1.6	46.0	49.0	1.85
No. 44	18/1.7	18/1.7	55.0	59.1	1.99
R. B. Forbes	22/2.2	19/2.0	81.2	86.5	2.35
No. 75	20/1.0	15/1.5		45.0	1.80
Barrow-Agee	17/1.7	20/1.7		49.7	1.86
Average*	19-1.7	17-1.7	59.6	60.9	2.01
Maximum*	22-2.2	.20-2.0	81.2	86.5	2.35
Minimum*		12-1.2	39.0	42.2	1.76

	Refined (oil A.O.C.S	. No. 5		
No. 47(1) No. 47(2) Barrow-Agee	*******	35/10.5 70/9.8 35/10.4	******	620 580 585	9.5 8.9 9.0

† A & B are different No. 50 filters.
*Chem. No. 46 is excluded from all averages.
Δ Calculated from line of best fit Lovibond Red = 0.01335K+1.2
where K is the Klett reading with the No. 50 filter.

merson colorimeter, using a No. 50 filter, were obtained on each oil as received. The data are reported in Table No. 6. Lovibond colors were calculated from the Klett readings using the equation shown in Figure 2. This equation, Lovibond red equals 0.01335 times the Klett reading, plus 1.2, gives results slightly high (approximately 0.3R) for low colors and slightly low (approximately 1.0R) for high colors. This does not mean that the equation is necessarily wrong for oils in general, but may merely indicate that the oil in question is not normal with respect to the oils used in determining the regression equation. The important point is not that calculated Lovibond red values do not exactly duplicate determined values, but that:

- 1. The photoelectric instrument will predict Lovibond values well within the limits of error of reading the colors by the Lovibond system;
- 2. The results determined photoelectrically show far less spread than determined Lovibond colors (spread $0.\overline{6}$ red vs. 1.2 red); and
- 3. A single operator is much more consistent than a number of operators in reading Lovibond colors.

Discussion

In any system of measuring oil colors, there are anomalies peculiar to that system. Certainly the practice of measuring the color of oils with Lovibond red only as the criterion and the practice of multiplying a 1" column by a factor to convert to a 51/4" column

basis are peculiar to the Lovibond system. These anomalies are not of serious consequence if oils are examined in a specified manner, if specified conditions are adhered to by everyone making the comparisons, and if everyone recognizes that there are not only anomalies in the system, but in the oils as well. These anomalies make it almost impossible to convert mathematically color readings on one system to equivalent readings on another. In general, however, such a conversion is entirely unnecessary. Almost any system will work as long as it is sound basically and used intelligently.

It is frequently of interest, however, to compare different methods and attempt to evaluate their relative usefulness as an analytical tool. Correlations (see Figure 2) are useful in comparing methods especially over limited ranges, but when one attempts to evaluate two methods of doing the same thing, correlations between the methods are subject to the errors of each and are meaningless. How then can we evaluate the relative usefulness of the Lovibond system and a photoelectric filter system? This report does not present sufficient data to allow such a comparison, hence it will be well to look critically at only the photocell-filter method, reserving any critical com parison with the Lovibond system to a later date.

TABLE NO. 7 Various Gradings of Oils 1-12

				Color	Rank		
Oil No.	(riginal (ils		Dilutio Oil No. 1		Standard*
	By Eye	By Lovibond	Klett No. 50	By Eye I	By Lovibond	By Klett	Shortening By Eye
1	1 2	1 2	1 2	1 2	1 3 1/2	1 2	1 2
3	3	3	3	3	2	3	3
5,	4 5	4 5	4 5	4	3 ½ 5	4.	4 5
6	7	6	ន័	9	7 1/2	ğ	á
7	7	7	7	7	6	7	9
8	7	8	6	6	7 1/2	6	7
9	.9	9	. ; ;	.8	.9	.8	6
10	11	10	11	11	10	11	11
11	10	11	10	100	11	10	10
12	12	12	12	112	12	12	12

"Original oils stirred down with 20% hardstock.

In Table No. 7, several comparisons of the twelve oils are shown. In general, most any system places the first five oils in the same position. Oil No. 10 is misplaced by the Lovibond system because of its high green content. By eye there is but little difference between oils 6, 7, 8, and 9, the last (9) being slightly darker than the others. The Lovibond colors vary from 7.7 to 31.7 which is a very wide spread. The least that can be said from the data in Table No. 7 is the Klett readings using the No. 50 filter show very good agreement with visual observation whether the gradings are made on the original oils or on 10% dilutions in oil No. 1. In general, the Klett gradings are better than the Lovibond using the eye as the final criterion.

Oil No. 6 is a refined soybean oil which is very abnormal in its color reactions. This should be taken into consideration when making deductions concerning these oils. Some of the abnormalities appear thus,

Lovibond color $5\frac{1}{4}$ "=20Y-7.6R Lovibond color 1" =20Y-3.0R Klett-Summerson readings, No. 50 filter 40 mm. column = 49520 mm. column = 37010 mm. column = 279

Stirred down with 20% hardstock, No. 6 oil gave a buttery yellow product much more highly colored than oils 7, 8, and 9. In other words, the pigment in oil No. 6 intensifies greatly on dilution or on observation through a shortened column.

The use of any system of measuring oil colors is dependent upon a set of rules governing the conditions under which an oil shall be read. Such oils as No. 6, which will be placed in different positions depending upon the conditions of the test, make the specifications necessary. From the data so far obtained on the Klett-Summerson equipment, oils could be satisfactorily graded by specifying that any filterphotoelectric system may be used having a filter-photocell response comparable to that shown in Figure 1 for the No. 50 filter, that oils having an apparent color density up to 0.3 (300 on the Klett instrument) shall be read on a 40 mm. column, above 0.3 on a 40 mm. column shall be read on a 10 mm. column, and above 0.3 on a 10 mm. column shall be read on a 2.5 mm. column. Other conditions such as light source, temperature of oil, etc., should be specified.

Using the above conditions for length of column, the 12 oils were read on the Klett instrument using the No. 50, No. 56, No. 60, and No. 66 filter. The results are as follows:

Oil No.	No. 50	No. 56	No. 60	No. 66
1,	6.5	2.8	1.3	5.5
2	$\frac{22.1}{23.5}$	4.0 0.5	-2.4	3.5 6.1
4	52.2	1.5	1.9	5.2
5	$\frac{145}{279}$	21.1 8.0	4.2 1.0	5.5 1.7
5 7	155	44.3	30.0	33,2
3	137 189	45.7 65.8	18.8 34.5	$\frac{11.2}{32.4}$
))	182	67.7	64.9	85.0
	160 310	60.0 130	31.1 69.0	40.0 70.0

The use of a sufficiently higher refractive index blank than water would eliminate all of the negative values.

How do the readings on the Klett-Summerson instrument compare with readings on other instruments reported in Tables No. 2 and No. 3? Exact comparisons are impossible since exact comparisons necessarily demand that exact filter-photocell combinations be used. It appears however that any of the photoelectric instruments used in the study will do a good job of differentiating between the oils studied and any single instrument or combination could, therefore, probably be adopted for the purpose of grading oils.

Conclusions

The Committee feels that the work so far completed justifies the belief that a filter-photocell instrument, or a grating-photocell instrument can successfully be used to measure oil colors.

A filter (or grating setting) having a maximum transmission in the neighborhood of 500 mu. would probably be the most successful in differentiating between both dark and light oils. The possibility of using a filter-photocell combination having a response approximating normal visual sensitivity must not be overlooked.

The Committee hopes after a careful study of all the information so far obtained to continue the work on additional oils limiting the work to specific conditions that may later be adopted as accepted procedure.

No recommendations can be made at this time other than that the work of the Committee be continued.

Respectfully submitted,

G. WORTHEN AGEE, Chairman, Color Committee.

The Problem of "Fines" in Continuous Solvent Extraction Systems

MICHELE BONOTTO

Production Engineering Company, Inc., and Extractol Process, Ltd.
New York City

If a check were made of the patent literature on the subject of continuous solvent extraction—literature very crowded, indeed—it would be surprising to discover how much attention has been given to continuous extractors and how little to the handling of the material itself before, during, and after extraction. Even in the matter of distillation of the miscella it apparently has been taken for granted that no solids exist in the liquid to be distilled, and all the attention has been given to the thermo-dynamics.

The main advantage of the continuous system over the old batch systems is the steady flow of the material under process, and its outstanding feature is the high degree of safety derived from the fact that the material flows throw vapor-tight apparatus, pipes, and conveyors without the necessity of periodical interruptions or manual intervention. The continuity of the flow, however, is frequently and often unexpectedly interrupted by the presence of "fines" and dust in the system when the equipment is unable to cope with it. Instead of trying to solve the problem radically, only temporary remedies have been adopted so far as, for example, using auxiliary equipment such as filter presses in the miscella cycle or elaborate dust collectors in the vapor lines to protect condensers—both devices more or less originally designed for entirely different operating conditions.

A rational solution of the problem would be to first attempt to avoid the production of "fines" as far as possible during the several steps of the process and then to design adequate equipment to handle them without trouble.

Only a long experience in operating continuous solvent extraction plants will give an idea of how such a simple process is complicated by seemingly